Отдельные фармакологические аспекты борьбы с утомлением

Чесноков А.В., к.п.н., доцент кафедры спортивных дисциплин

Россия, Томск

Почему человек устает на тренировке? Почему к концу тренировки иногда появляются вялость, заторможенность, нежелание заниматься? Все это происходит в основном в результате накопления в крови «токсинов усталости».

«Токсины усталости» – понятие собирательное. В медицине под «токсинами усталости» подразумевают целую группу веществ, которые являются промежуточными или побочными продуктами обмена. Эти вещества образуются в организме как результат интенсивной и продолжительной работы. В первую очередь это молочная и пировиноградная кислоты – побочные продукты окисления глюкозы и гликогена в организме. В норме при кислородном окислении глюкозы и гликогена они окисляются до углекислоты газа и воды. При больших физических нагрузках потребность организма в кислороде превышает возможности дыхательной, сердечно-сосудистой и кровеносной систем удовлетворить эту потребность.

В результате все энергетические субстраты окисляются не полностью. Часть углеводов окисляется только до молочной и пировиноградной кислоты. Причем увеличение в крови содержания молочной кислоты блокирует кровяные системы транспорта кислорода и затрудняет проникновение его в клетки.

Возникает замкнутый круг: чем меньше кислорода, тем больше молочной кислоты, а чем больше молочной кислоты, тем меньше ткани усваивают кислорода. Утомление при этом нарастает как снежный ком. Кривая нарастания утомления становится круче к концу тренировки (утомление нарастает быстрее).

При возникновении даже небольшого углеводного дефицита организм начинает интенсивно окислять жирные кислоты и глицерин. Уже через 15-20 минут тренировки механизм окисления жирных кислот начинает работать в полную силу. Жирные кислоты никогда не окисляются полностью при дефиците глюкозы. Окисление происходит только до стадии кетоновых тел (ацетон, ацетоуксусная кислота, В-оксимасляная кислота, ацетомасляная кислоты и т.д.).

В развитие утомления вносят свой вклад также процессы брожения и гниения в кишечнике в результате неполного переваривания пищи. Это может быть вызвано неправильным режимом питания (смешанное питание), неправильным рационом (употребление трудно перевариваемой пищи), заболеваниями желудочно-кишечного тракта (гастриты, язвенная болезнь), да и просто перееданием.

Белковый обмен также вносит свой вклад в интоксикацию организма. Такими токсинами являются различные азотистые соединения, и в первую очередь аммиак, которые образуются в процессе аминокислотного обмена. Если учесть, что многие спортсмены, особенно культуристы, вынуждены потреблять большое количество белковой пищи, то становится понятно, что фон азотистой интоксикации у таких лиц явно завышен. Особенно сильную азотистую интоксикацию дает мясо, за ним следуют птица, рыба, молочные продукты, яйца.

При интенсивных физических нагрузках в организме образуется большое число высокотоксичных свободных радикалов: оксидов, гидроксидов и перекисей. Эти соединения химически очень агрессивны. Они способны повреждать клеточные мембраны и вызывать самые различные нарушения жизнедеятельности организма. Естественно, что работоспособность при этом также снижается.

Итак, мы выделили 5 основных групп токсинов усталости:

•  Молочная и пировиноградная кислоты.

•  Кетоновые тела (ацетон и др.).

•  Продукты гниения и брожения в кишечнике.

•  Продукты азотистого обмена (аммиак и др.).

•  Свободные радикалы.

Рассмотрим обезвреживание различных токсических веществ по порядку.

I. Молочная и пировиноградная кислоты.

В организме существует механизм поддержания и повышения работоспособности, который носит название глюконеогенеза, буквально – новообразование глюкозы. Глюкоза вырабатывается их многих промежуточных продуктов окисления, в том числе и из молочной кислоты. В результате, молочная кислота из токсичного продукта превращается в глюкозу, так необходимую организму при больших физических нагрузках. Помимо молочной кислоты организм может синтезировать глюкозу из пировиноградной кислоты, аминокислот, глицерина, жирных кислот и др.

Где происходит глюконеогенез? В основном в печени. Именно там синтезируются короткоживущие (всего в течение нескольких дней) ферменты, которые утилизируют самые разные вещества с одной целью – выработать достаточное количество глюкозы. При больших физических нагрузках в глюконеогенезе начинают принимать участие почки, а при еще больших нагрузках, близких к предельным, – кишечник. Но роль почек и кишечника носит вспомогательный характер. Основная роль принадлежит, все же, печени.

В нормальном, здоровом организме 50% всей молочной кислоты утилизируется печенью, превращаясь в глюкозу. При интенсивной мышечной работе умеренный распад белковых молекул сопровождается выходом аминокислот в кровь и их утилизацией в процессе глюконеогенеза, образованием той же глюкозы. Особенно хорошо утилизируются такие аминокислоты, как аланин (в печени) и глютаминовая кислота (в кишечнике).

«Мощность» глюконеогенеза, основного механизма, избавляющего нас от молочной кислоты, зависит от того, насколько интенсивно печень и другие органы синтезируют ферменты глюконеогенеза.

Для нормального синтеза ферментов глюконеогенеза необходимо:

Во-первых, здоровая печень. Достаточно назначить любой препарат, улучшающий работу печени, как сразу же происходит повышение общей работоспособности. Это подтвердит вам любой практикующий врач.

Во-вторых, необходима определенная активизация симпатико-адреналовой системы и достаточное содержание в крови глюкокортикоидных гормонов. Во время интенсивных тренировок происходит сильная активизация симпатико-адреналовой системы и массированный выброс в кровь глюкокортикоидов. Глюкортикоиды оказывают катаболическое действие на все органы и ткани за исключением печени. В печени под влиянием глюкокортикоидов, наоборот, усиливается анаболизм и происходит быстрый синтез ферментов глюконеогенеза. В процессе тренировки под влиянием глюкокортикоидов происходит умеренный рабочий распад мышечной и жировой тканей. Продукты этого распада утилизируются печенью с образованием глюкозы.

В-третьих, только регулярные физические тренировки могут быть основой нарастания мощности глюконеогенеза. Глюконеогенез, как и любая другая функция организма, поддается тренировке. Если у нетренированного человека мощность глюконеогенеза при физической работе может возрастать в 5 раз, то у квалифицированного спортсмена мощность глюконеогенеза может возрастать в 20 раз и более. В организме высококвалифицированных спортсменов глюконеогенез развит настолько хорошо, что его мощность нарастает прямо пропорционально нарастанию количества молочной кислоты в крови.

Мощность глюконеогенеза – один из основных факторов (если только не самый основной), от которого зависит выносливость.

С момента открытия глюконеогенеза постоянно делались попытки активизировать его различными фармакологическим путем. Вначале с этой целью использовали амфетамины: фенамин, первитин и др. Амфетамины являются мощным активизатором глюконеогенеза, причем под действием амфетаминов в глюконеогенезе утилизируется в основном жировая ткань. Со временем выяснилось, что амфетамины нельзя вводить в организм слишком часто, так как они истощают резервы катехоламинов в центральной нервной системе. Их стали использовать только изредка, во время соревнований, да и то в ограниченных количествах, так как даже однократное введение большой дозы амфетаминов может привести к нервному срыву. Только после участившихся трагических случаев среди высококвалифицированных спортсменов, амфетамины в спорте были строжайше запрещены.

Одно время заманчивым казалось применение глюкокортикоидных гормонов, ведь они являются самым сильнодействующим фактором, активизирующим глюконеогенез. Даже однократное введение глюкокортикоидов повышает выносливость (в том числе и силовую) на 70%. Со временем оказалось, однако, что при повторном введении эффект от глюкортикоидов снижается, а их катаболическое действие на мышечную ткань увеличивается. Поэтому от использования глюкортикоидов в тренировочном процессе тоже пришлось отказаться. Тем не менее, находятся «смельчаки», которые применяют их в качестве допинга до сих пор.

Также активизируют глюконеогенез анаболические стероиды. Особенно сильной активизации глюконеогенеза удается добиться при сочетании анаболических стероидов с глюкокортикоидными гормонами, однако ни о каком наращивании мышечной массы здесь не может быть и речи из-за сильного катаболического действия глюкокортикоидов, которое едва-едва удается «прикрыть» стероидами. Поскольку и анаболические стероиды, и глюкокортикоиды относятся к допингам, их применение в соревновательном периоде строжайше запрещено. Да и побочных действий при длительном применении развивается немало.

Совершенно новый этап в фармакологии глюконеогенеза был открыт с изобретением актопротекторов. Актопротекторы – совершенно новый класс веществ, повышающих выносливость. Их действие основано на том, что они избирательно стимулируют синтез глюконеогенеза в печени, почках и кишечнике, больше ни на что не влияя. Актопротекторы, таким образом, отдаляют поступление тренировочного утомления и позволяют выполнить больший объем физической работы, вом числе силового характера. Актопротекторы малотоксичны, не вызывают привыкания к стимуляции. К допинговым препаратам не относятся. Актопротекторы хороши тем, что их можно использовать как в тренировочном, так и в соревновательном периодах, не опасаясь развития каких-либо побочных действий. Правильное применение актопротекторов повышает работоспособность в 1,5-2 раза и их эффект вполне сравним с эффектом глюкокортикоидных гормонов. Помимо усиления глюконеогенеза, актопротекторы повышают проницаемость клеточных мембран для глюкозы, что благоприятно сказывается на энергетическом потенциале клеток.

Клиническую проверку в настоящее время проходит полтора десятка препаратов, однако, в продаже имеется пока лишь только один актопротекторбемитил.

Значительной активизации глюкогенеза удается добиться при введении в организм больших количеств витамина А (от 100 тыс. ЕД до 1 млн. ЕД). При передозировке бывают побочные действия (витамин А способен накапливаться в организме), однако они быстро проходят после отмены препарата.

II. Кетоновые тела

В настоящее время есть только одно узкоспециализированное средство для активизации окисления жирных кислот и устранения кетонового ацидоза. Это карнитин. Отметим лишь то, что карнитин совершенно безвреден. Он повышает проницаемость клеточных мембран для жирных кислот и усиливает окисление жирных кислот внутри клетки. Принимать его нужно в больших дозах (по 6-8 г в сутки). Меньшие дозы эффекта не дают. Справедливости ради, следует отметить, что печень здорового человека сама по себе способна синтезировать карнитин. Особенно хорошо карнитин синтезируется у тех спортсменов, которые длительно тренируются на выносливость.

Все средства, усиливающие глюконеогенез, также будут способствовать полной утилизации жирных кислот. Во-первых, это происходит потому, что жирные кислоты утилизируются в процессе глюконеогенеза и превращаются в глюкозу. И, во-вторых, сама по себе образующаяся в процессе глюконеогенеза глюкоза способствует более полному окислению жирных кислот.

III. Продукты гниения и брожения в кишечнике

Для устранения процессов гниения и брожения в кишечнике необходимо сосредоточить свое внимание на полном переваривании употребляемых продуктов. Для этого необходимо:

•  Исключить переедание, если таковое имеет место, так как переваривающая способность желудочно-кишечного тракта ограничена определенными пределами.

•  Переваривающая способность желудочно-кишечного тракта может быть повышена с помощью пищеварительных ферментов. Прием таких препаратов, как «Фестал», «Панкреатин», «Трифермент» и др., позволит усвоить большие, чем обычно, количества пищи.

•  Устранить заболевания пищеварительной системы, если таковые имеют место.

•  Соблюдать принципы раздельного питания: пить только до еды, углеводную пищу употреблять отдельно от белковой.

•  Избегать грубой мясной пищи, содержащей толстые мышечные волокна (грубоволокнистое мясо). Оболочки таких мышечных волокон перевариваются с трудом, а иногда вообще не перевариваются.

•  Избегать употребление слишком большого количества клетчатки, которая не переваривается (злаковые культуры, бобовые, овощи и фрукты).

IV. Продукты азотистого обмена

С токсическими продуктами азотистого обмена бороться нелегко. В основном в ход идут препараты, улучшающие функцию печени (диксорин, «Карсил», «Эссенциале», «Лив-52» и т.д.) и почек. Очень хорошим дезинтоксикационным действием обладает глютаминовая кислота, которая связывает токсичный аммиак и превращается в нетоксичный глютамин. Глютамин впоследствии используется в процессе белкового синтеза. Анаболические стероиды способствуют фиксации азотистых соединений в организме, которые идут на нужды белкового синтеза. Но используются при этом стероиды только в очень малых дозах, чтобы не вызвать повреждения печени.

Дезинтоксикационная функция печени повышается под действием больших доз аскорбиновой кислоты и рутина (3-5 г/сут), под действием липоевой кислоты (до 1 г/сут), пантотената кальция – витамина В5 (3 г/сут), пангамата кальция – витамина В15 (0,5-1 г/сут), кобамамидакоферментной формы витамина В12 (до 1 мг/сут).

V. Свободные радикалы

Для нейтрализации избыточного количества свободных радикалов в организме существуют свои мощные системы защиты, однако и их порой бывает недостаточно, и здесь представляется целесообразным использование фармакологических препаратов, прежде всего некоторых витаминов. Аскорбиновая кислота, витамины группы Р, никотиновая и бензойная кислоты являются сильными антиоксидантами.

Классическим витамином с антиоксидантным действием является витамин Е (альфа-токоферол), который, помимо своего антиоксидантного действия, обладает способностью снижать потребность организма в кислороде и повышать работоспособность.

Антиоксидантным действием в той или иной степени обладают витамины группы К, азотистые соединения, карнозин и анзерин, фосфолипиды (лецитин), микроэлемент селен.

Существует узкоспециализированная группа фармакологических препаратов, которая выполняет в организме почти исключительно антиоксидантную роль. Это такие препараты, как «Дибунол», «Эмоксипин», «Мексидол», «Убинон», «Гипоксен». Особенно широко в спортивной практике применяются «Эмоксипин», «Мексидол» и «Убинон». «Мексидол» проявляет не только антиоксидантное, но также и противогипоксическое действие, повышая устойчивость организма к недостатку кислорода.

В заключение необходимо отметить, что природа утомления, а тем более переутомления намного сложнее, чем просто образование «токсинов усталости. Однако образование «токсинов усталости» – это один из основных механизмов и его нужно знать. Знать, чтобы уметь бороться с усталостью и как следствие – падением спортивных результатов.